
Dr.Aid: an automated formal framework to support
data-governance rule compliance for decentralized

collaboration

Rui Zhao
Supervised by: Petros Papapanagiotou, Malcolm Atkinson, Jacques Fleuriot

University of Edinburgh

2021-05-24

1/19



Rules – heterogeneity, similarity and redundancy

2/19



Problem to solve

• Large collection of ... data
• personal
• sensitive
• valuable

• Issues of ...
• data privacy
• ownership
• governance

Compliance checking remains ...
• manual
• time consuming
• error prone

3/19



Problem to solve

• Large collection of ... data
• personal
• sensitive
• valuable

• Issues of ...
• data privacy
• ownership
• governance

Compliance checking remains ...
• manual
• time consuming
• error prone

3/19



Problem to solve

• Large collection of ... data
• personal
• sensitive
• valuable

• Issues of ...
• data privacy
• ownership
• governance

Compliance checking remains ...
• manual
• time consuming
• error prone

3/19



Example use case

Data governance rules associated with dataset D by data provider DP

Users should properly acknowledge the data provider in their publications, in a form
similar to “This work ...”.
Field DoB (Date of Birth) in the data is potentially sensitive and any use of it should be
reported to the data provider, through the URL report.example.ac.

4/19



Issues identified

1. (Personnel) Scattering: data processing is multi-institutional (providers don’t work
together with users);

2. (Rule) Propagation: derived data can be used as input data further;

3. (Rule) Diversity: policies can be more than access control, e.g. obligations;

4. Dynamic (rule) application: processes can change the policies applied to data;

5. (Rule) Combination and separation: processes are multi-input-multi-output
(MIMO).

5/19



Related research

6/19



From data flow to rule flow

7/19



What is Dr.Aid

Dr.Aid (Data Rule Aid) is a logic-based framework for automated compliance checking
of data governance rules over data flow graphs.

8/19



What is Dr.Aid

Dr.Aid (Data Rule Aid) is a logic-based framework for automated compliance checking
of data governance rules over data flow graphs.

Highlights:

• Logic-based (situation calculus)
• All 5 issues addressed, in particular:

• Recognises rule diversity
• Addresses dynamic rule application
• Supports MIMO

8/19



Model

• Language:
• data rule, for data-governance rules for multi-staged processing, e.g. “users must properly

acknowledge the data providers”
• flow rule, for the changes of data rules in each process as a result of data transportation and

transformation, e.g. “column 3 from input 1 is changed to column 2 on output 2”

• Supports obligation: user must do something after using the data
• Retrospective analysis from provenance

• CWLProv (file-oriented)
• S-Prov (data-streaming)

9/19



Language – example

Data-use policy (as data rule)

Field DoB (Date of Birth) in the data is potentially
sensitive and any use of it should be reported to the
data provider.

Process information (as flow rule)

• changes column DoB from input 1 to column
YroB on output 2;

• removes column DoB from input 1 on output 1;

• propagates the rest of the data unaffected
regarding the data-use policy.

10/19



Language – example modelled

11/19



Language – example modelled and query
Querying is analogous to the projection task, i.e. querying predicates (fluents) that hold
at the targeted final situation:

Sf = Do(pr(input1, [output1, output2]) :

delete(input1, output1, ∗, column, ”DoB”) :

edit(input1, output2, ∗, column, ”DoB”, column, ”YroB”) :

end([output1, output2]), s0).

? − attribute(N ,T ,V ,X , Sf ).

resulting in

attribute(ru, url , ”report@example.ac”, [output1, input1, pf1], Sf )

attribute(pf , column, ”YroB”, [output2, input1, pf1], Sf )

attribute(ru, url , ”report@example.ac”, [output2, input1, pf1], Sf )

... and the same procedure for obligations.

12/19



Language – example modelled and query
Querying is analogous to the projection task, i.e. querying predicates (fluents) that hold
at the targeted final situation:

Sf = Do(pr(input1, [output1, output2]) :

delete(input1, output1, ∗, column, ”DoB”) :

edit(input1, output2, ∗, column, ”DoB”, column, ”YroB”) :

end([output1, output2]), s0).

? − attribute(N ,T ,V ,X , Sf ).

resulting in

attribute(ru, url , ”report@example.ac”, [output1, input1, pf1], Sf )

attribute(pf , column, ”YroB”, [output2, input1, pf1], Sf )

attribute(ru, url , ”report@example.ac”, [output2, input1, pf1], Sf )

... and the same procedure for obligations.
12/19



Language – Data rule

• attributes (N ,T ,V ), describing properties of the data
• a name N
• a type T
• a value V

• obligations (OD,VB ,AC )
• an obligation definition OD (the obligated action to perform upon activation)
• a validity binding VB (describing additional applicability constraints)
• an activation condition AC (the triggering condition)

13/19



Language – flow rule

• propagate pr(Pin,Psout)

• edit edit(Pin,Pout ,N ,T ,V ,Tnew ,Vnew )

• delete delete(Pin,Pout ,N ,T ,V )

pr(input1, [output1, output2])

delete(input1, output1, ∗, column,DoB)

edit(input1, output2, ∗, column,DoB , column,YroB)

∗ represents anything, used as wildcard.

14/19



Language – flow rule

• propagate pr(Pin,Psout)

• edit edit(Pin,Pout ,N ,T ,V ,Tnew ,Vnew )

• delete delete(Pin,Pout ,N ,T ,V )

pr(input1, [output1, output2])

delete(input1, output1, ∗, column,DoB)

edit(input1, output2, ∗, column,DoB , column,YroB)

∗ represents anything, used as wildcard.

14/19



Situation calculus formalisation
Situation calculus models things into three components:
• fluent: predicate with situation, holding different truth values at different situations
• situation: state of the world, where the initial situation specifies the initial state of

the world
• action: behaviour to change the world, applying to a situation and resulting in a

new situation

We model:
• data rule terms as fluents
• the initial data rules are specified for the initial situation
• the flow rules are modelled as actions

We do:
• flow rules as action sequence
• final situation Sf as the situation after performing all flow rules starting from the

initial situation s0
• query all attribute() and obligation() which hold in the final situation Sf

15/19



Situation calculus formalisation
Situation calculus models things into three components:
• fluent: predicate with situation, holding different truth values at different situations
• situation: state of the world, where the initial situation specifies the initial state of

the world
• action: behaviour to change the world, applying to a situation and resulting in a

new situation
We model:
• data rule terms as fluents
• the initial data rules are specified for the initial situation
• the flow rules are modelled as actions

We do:
• flow rules as action sequence
• final situation Sf as the situation after performing all flow rules starting from the

initial situation s0
• query all attribute() and obligation() which hold in the final situation Sf

15/19



Situation calculus formalisation

We model:

• data rule terms as fluents

• the initial data rules are specified for the initial situation

• the flow rules are modelled as actions

We do:

• flow rules as action sequence

• final situation Sf as the situation after performing all flow rules starting from the
initial situation s0

• query all attribute() and obligation() which hold in the final situation Sf

15/19



System structure

16/19



Outcomes from system

17/19



Language coverage

18/19



Thanks
for listening!

19/19


